Pseudospectral Continuation for Aeroelastic Stability Analysis

Author:

Pons Arion1

Affiliation:

1. Benin School of Computer Science and Engineering, and the Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Giv’at Ram, Jerusalem 91904, Israel

Abstract

AbstractThis technical note is concerned with aeroelastic flutter problems: the analysis of aeroelastic systems undergoing airspeed-dependent dynamic instability. Existing continuation methods for parametric stability analysis are based on marching along an airspeed parameter until the flutter point is found—an approach that may waste computational effort on low-airspeed system behavior, before a flutter point is located and characterized. Here, we describe a pseudospectral continuation approach that instead marches outward from the system’s flutter points, from points of instability to points of increasing damping, allowing efficient characterization of the subcritical and supercritical behavior of the system. This approach ties together aeroelastic stability analysis and abstract linear algebra and, by reducing the sample space in which the analysis needs to take place, provides efficient methods for computing practical aeroelastic stability properties—for instance, flight envelopes based on maximum modal damping and the location of borderline-stable zones.

Publisher

ASME International

Subject

General Engineering

Reference34 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3