Affiliation:
1. Ansaldo Energia Switzerland, Haselstrasse 18, Baden 5400, Switzerland
2. Institute of Thermal Turbomachinery (ITS), Karlsruher Institute of Technology (KIT), Kaiserstrasse 12, Karlsruhe 76131, Germany
Abstract
Abstract
Current research and development efforts in the field of heavy-duty gas turbines focus on increasing engine efficiencies, lowering combustor emissions, and extending inspection intervals. To achieve further improvements in these development fields, it is crucial for gas turbine manufacturers to continuously build up knowledge on leakage air inside different components of gas turbines. Leakage air can by nature be hardly predicted and is usually only estimated indirectly in real engines. Therefore, investigations on representative test rigs remain a fundamental method for quantifying air leakages more accurately. This article deals with a specific air leakage, which can occur between two firmly pressed rigid surfaces. One challenge for the engineers is to predict the leakage for new surfaces but also used surfaces with fretting corrosion and wear marks as a function of the contact force. In this perspective, air mass flow measurements were performed in a leakage test rig for different contact geometries, pressure ratios, and compression levels between the surfaces. The purpose of the analysis is to determine the potential effect of the roughness, length, curvature, and contact forces of the pressed surfaces on the leakage amount. The presented measurement procedure and results contribute to the extension of the leakage characteristic database for generic gas turbine components.
Subject
Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献