Robust Tracking Control for Electrohydraulic System Using an Internal Model-Based Sliding Surface

Author:

Sun Hao1,Sun Zongxuan2,Li Shihua1

Affiliation:

1. School of Automation, Southeast University, Nanjing 210096, China; Key Laboratory of Measurement and Control of Complex Systems of Engineering, Ministry of Education, Nanjing 210096, China

2. Department of Mechanical Engineering, University of Minnesota, Twin-Cities Campus, 111 Church Street SE, Minneapolis, MN 55455

Abstract

Abstract An electrohydraulic system, which is widely applied in practice, is a highly nonlinear system with uncertainty. In order to improve the control performance, the nonlinearity and uncertainty should be taken into consideration. In this context, a lot of researches have been carried out, and most of them need the derivatives of the tracking error to construct their controllers. However, the accurate values of the derivatives are difficult to be obtained in practice. What's more, without considering the characteristics of the reference signal, the direct applications of these control methods in the periodic motion tracking problem of electrohydraulic systems are difficult to achieve satisfactory control performances. Therefore, a novel internal model principle (IMP)-based sliding mode control (SMC) is proposed in the paper. First, an ideal driving force for the second-order piston motion dynamics is designed based on the IMP with the measurement of piston position. And then, the deviation between the ideal and measured driving force is selected as the sliding mode variable. At last, the SMC is formed to guarantee the actual driving force can converge to the ideal one in finite time. As the main contribution of this paper, the proposed IMP-based SMC does not need the derivatives of the tracking error and can achieve a better performance by eliminating the reference frequency related component in the tracking error. To verify the control performance of the proposed method, a 20 Hz sinusoidal reference tracking scenario is considered, and the finite-time exact differentiator (FTD)-based SMC and the FTD-based high-order SMC (HOSMC) are selected as comparison methods. A group of simulations are performed on an electrohydraulic system used in the controlled trajectory rapid compression and expansion machine (CT-RCEM). The simulation results show that the 20 Hz component in the tracking error is eliminated under the proposed controller, but the 20 Hz error components are still remaining as 2.58 mm and 0.64 mm under the FTD-based SMC and the FTD-based HOSMC, respectively.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3