Recursive Identification of Vibrating Structures from Noise-Corrupted Observations, Part 1: Identification Approaches

Author:

Ben Mrad R.1,Fassois S. D.1

Affiliation:

1. Department of Mechanical Engineering and Applied Mechanics, The University of Michigan, Ann Arbor, MI 48109-2121

Abstract

In this paper the problem of recursive structural dynamics identification from noise-corrupted observations is addressed, and approaches that overcome the weaknesses of current methods, stemming from their underlying deterministic nature and ignorance of the fact that structural systems are inherently continuous-time, are introduced. Towards this end the problem is imbedded into a stochastic framework within which the inadequacy of standard Recursive Least Squares-based approaches is demonstrated. The fact that the continuous-time nature of structural systems necessitates the use of compatible triples of excitation signal type, model structure, and discrete-to-continuous transformation for modal parameter extraction is shown, and two such triples constructed. Based on these, as well as a new stochastic recursive estimation algorithm referred to as Recursive Filtered Least Squares (RFLS) and two other available schemes, a number of structural dynamics identification approaches are formulated and their performance characteristics evaluated. For this purpose structural systems with both well separated and closely spaced modes are used, and emphasis is placed on issues such as the achievable accuracy and resolution, rate of convergence, noise rejection, and computational complexity. The paper is divided into two parts: The problem formulation, the study of the interrelationships among excitation signal type, model structure, and discrete-to-continuous transformation, as well as the formulation of the stochastic identification approaches are presented in the first part, whereas a critical evaluation of their performance characteristics based on both simulated and experimental data is presented in the second.

Publisher

ASME International

Subject

General Engineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3