The Effects of High Centrifugal Acceleration on Bluff-Body Stabilized Premixed Flames

Author:

Erdmann Timothy J.1,Gutmark Ephraim J.1,Caswell Andrew W.2

Affiliation:

1. Department of Aerospace Engineering & Engineering Mechanics, The University of Cincinnati , Cincinnati, OH 45221

2. Air Force Research Laboratory , Wright-Patterson AFB, OH 45433

Abstract

Abstract An experimental study is conducted on bluff-body stabilized premixed flames in a curved, square cross section duct. High flow velocities coupled with a small radius of curvature of the duct induce high centrifugal acceleration normal to the flame sheet. A cylindrical flame holder spans the width of the square cross section and is positioned at the channel midheight. Flame shear layers are stabilized on the radially inward (upper) and outward (lower) edges of the flame holder. Side-view high-speed Schlieren images and high-speed pressure measurements are captured. Static stability, overall pressure loss, and statistics and velocimetry results from the Schlieren images are reported, and results are compared to a straight configuration with no centrifugal acceleration. Two bluff-body diameters are studied to show the effect of flame holder diameter on static stability. For the curved configuration, blowout velocities are higher for the smaller bluff-body diameter, likely due to flow acceleration effects. Blowout velocities are lower for the curved configuration compared to the straight configuration which may be due to the destabilizing Rayleigh–Taylor (RT) effect on the upper flame layer. Overall pressure loss is slightly higher for the curved configuration than the straight configuration. High-speed Schlieren results show centrifugal acceleration causes significant structural and velocimetric asymmetry in the bluff-body wake. In the curved configuration, the upper flame layer displays destabilizing RT instabilities, and the lower flame layer displays stabilizing RT effects. The upper flame shows vigorous RT instabilities which broaden the flame brush and sustain a flame leading edge independent of inlet Reynolds number or velocity. Conversely, the lower flame exhibits suppression of Kelvin–Helmholtz and flame-generated instabilities in the wake, which confines the flame brush and significantly reduces transverse flame velocities. The lower flame edge profile moves toward the channel centerline with increasing inlet Reynolds number. The upper flame in the curved configuration shows higher flame edge velocities than the straight configuration while the lower flame shows velocities closer to zero. The empirical constant to the power law relation for upper flame edge velocities agrees with RT-dominated flame growth theory for this experimental scale and agrees with other RT-dominated flame studies.

Funder

Air Force Research Laboratory

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference56 articles.

1. Investigation of the Character of the Equilibrium of an Incompressible Heavy Fluid of Variable Density;Proc. London Math. Soc.,1882

2. LIX. On Convection Currents in a Horizontal Layer of Fluid, When the Higher Temperature Is on the Under Side;London, Edinburgh, Dublin Philos. Mag. J. Sci.,1916

3. The Instability of Liquid Surfaces When Accelerated in a Direction Perpendicular to Their Planes,1950

4. Rayleigh's Challenge Endures;Nature,1994

5. An Overview of Rayleigh–Taylor Instability;Phys. D: Nonlinear Phenom.,1984

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3