Increasing Adiabatic Film-Cooling Effectiveness by Using an Upstream Ramp

Author:

Na Sangkwon1,Shih Tom I-P.1

Affiliation:

1. Department of Aerospace Engineering, Iowa State University, Ames, IA 50011-2271

Abstract

A new design concept is presented to increase the adiabatic effectiveness of film cooling from a row of film-cooling holes. Instead of shaping the geometry of each hole; placing tabs, struts, or vortex generators in each hole; or creating a trench about a row of holes, this study proposes a geometry modification upstream of the holes to modify the approaching boundary-layer flow and its interaction with the film-cooling jets. Computations, based on the ensemble-averaged Navier–Stokes equations closed by the realizable k‐ε turbulence model, were used to examine the usefulness of making the surface just upstream of a row of film-cooling holes into a ramp with a backward-facing step. The effects of the following parameters were investigated: angle of the ramp (8.5deg, 10deg, 14deg), distance between the backward-facing step and the row of film-cooling holes (0.5D,D), blowing ratio (0.36, 0.49, 0.56, 0.98), and “sharpness” of the ramp at the corners. Results obtained show that an upstream ramp with a backward-facing step can greatly increase surface adiabatic effectiveness. The laterally averaged adiabatic effectiveness with a ramp can be two or more times higher than without the ramp by increasing upstream and lateral spreading of the coolant.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference27 articles.

1. Metzger, D. E. , 1985, “Cooling Techniques for Gas Turbine Airfoils,” AGARD CP 390, pp. 1–12.

2. Turbine Blade Heat Transfer;Moffat

3. Special Section on Turbine Science and Technology;Shih;J. Propul. Power

4. Film Cooling;Goldstein

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3