Numerical Simulation of Transport in Optical Fiber Drawing with Core–Cladding Structure

Author:

Chen Chunming1,Jaluria Yogesh1

Affiliation:

1. Department of Mechanical and Aerospace Engineering, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903

Abstract

Optical fibers are typically drawn from silica preforms, which usually consist of two concentric cylinders called the core and the cladding, heated in a high-temperature furnace. For optical communication purposes, the core always has a higher refractive index than the cladding to obtain total internal reflection. In order to investigate the effect of this core–cladding structure on optical fiber drawing, a numerical model has been developed in this work. Axisymmetric flows of a double-layer glass and aiding purge gas in a concentric cylindrical furnace are considered. The thermal and momentum transport in both glass layers and gas are coupled at the interface boundaries. The neck-down profile is generated using an iterative numerical scheme. The zonal method is applied to model the radiation transfer in the glass preform. The gas is taken as nonparticipating. Coordinate transformations are used to convert the resulting complex domains into cylindrical regions. The stream function, vorticity, and energy equations for the core, the cladding, and the purge gas are solved by finite difference methods, using a false transient approach coupled with the alternating direction implicit method. A second-order differencing scheme is used for discretization. The numerical results are validated by comparing with results available in the literature. The effects of changes in the refractive index and absorption coefficient due to doping on fiber drawing are investigated. This problem has received very little attention in the literature, particularly with respect to modeling, and this paper presents an initial study of the underlying transport.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference27 articles.

1. Physical Behavior of the Neck-down Region during Furnace Drawing of Silica Fibers;Paek;J. Appl. Phys.

2. A Model for Unsteady Analysis of Preform Drawing;Myers;AIChE J.

3. The Effects of Geometry and Temperature Variations on the Radiative Transport during Optical Fiber Drawing;Lee;J. Mater. Process. Manuf. Sci.

4. Effects of Streamwise Convergence in Radius on the Laminar Forced Convection in Axisymmetric Ducts;Lee;Numer. Heat Transfer, Part A

5. Effects of Variable Properties and Viscous Dissipation During Optical Fiber Drawing;Lee;ASME J. Heat Transfer

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3