Convolutional Dimension-Reduction With Knowledge Reasoning for Reliability Approximations of Structures Under High-Dimensional Spatial Uncertainties

Author:

Shi Luojie1,Zhou Kai2,Wang Zequn3

Affiliation:

1. Zhejiang University of Technology College of Mechanical Engineering, , Hangzhou, Zhejiang 310023 , China

2. The Hong Kong Polytechnic University Department of Civil and Environmental Engineering, , Hung Hom, Kowloon 999077 , Hong Kong

3. University of Electronic Science and Technology of China (UESTC) School of Mechanical and Electrical Engineering, , Chengdu 610056 , China

Abstract

Abstract Along with the rapid advancement of additive manufacturing technology, 3D-printed structures and materials have been successfully employed in various applications. Computer simulations of these structures and materials are often characterized by a vast number of spatial-varied parameters to predict the structural response of interest. Direct Monte Carlo methods are infeasible for uncertainty quantification and reliability assessment of such systems as they require a large number of forward model evaluations to obtain convergent statistics. To alleviate this difficulty, this paper presents a convolutional dimension-reduction method with knowledge reasoning-based loss regularization for surrogate modeling and uncertainty quantification of structures with high-dimensional spatial uncertainties. To manage the inherent high-dimensionality, a deep convolutional dimension-reduction network (ConvDR) is constructed to transform the spatial data into a low-dimensional latent space. In the latent space, knowledge reasoning is formulated as a form of loss regularization, and evolutionary algorithms are employed to train both the ConvDR network and a linear regression model as surrogate models for predicting the response of interest. 2D structures with spatial-variated material compositions are used to demonstrate the performance of the proposed approach.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3