Performance Analysis of a Near-Field Thermophotovoltaic Device With a Metallodielectric Selective Emitter and Electrical Contacts for the Photovoltaic Cell

Author:

Yang Yue1,Chang Jui-Yung1,Sabbaghi Payam1,Wang Liping2

Affiliation:

1. School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85287

2. School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85287 e-mail:

Abstract

The photon transport and energy conversion of a near-field thermophotovoltaic (TPV) system with a selective emitter composed of alternate tungsten and alumina layers and a photovoltaic cell sandwiched by electrical contacts are theoretically investigated in this paper. Fluctuational electrodynamics along with the dyadic Green's function for a multilayered structure is applied to calculate the spectral heat flux, and the photocurrent generation and electrical power output are solved from the photon-coupled charge transport equations. The tungsten and alumina layer thicknesses are optimized to obtain maximum electrical power output for bare TPV cell. The spectral heat flux is much enhanced when plain tungsten emitter is replaced with the multilayer emitter due to the effective medium intrinsic lossy property and additional surface plasmon polariton coupling in the tungsten thin film, for which the invalidity of effective medium theory to predict photon transport in the near field with multilayer emitters is discussed. Effects of a gold back reflector and indium tin oxide front coating with nanometer thickness, which could practically act as the electrodes to collect the photon-generated charges on the TPV cell, are explored. The conversion efficiency of 23.7% and electrical power output of 0.31 MW/m2 can be achieved at a vacuum gap distance of 100 nm when the emitter and receiver temperature are, respectively, set as 2000 K and 300 K.

Funder

National Science Foundation

Arizona State University

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3