Linear and Nonlinear Viscoelastic Arterial Wall Models: Application on Animals

Author:

Ghigo Arthur R.1,Wang Xiao-Fei1,Armentano Ricardo2,Fullana Jose-Maria1,Lagrée Pierre-Yves1

Affiliation:

1. CNRS UMR 7190, Institut Jean le Rond ∂'Alembert, UPMC Univ Paris 06, Sorbonne Universités, Paris F-75005, France

2. Faculty of Engineering and Natural and Exact Sciences, Favaloro University, Buenos Aires C1078AAI, Argentina

Abstract

This work deals with the viscoelasticity of the arterial wall and its influence on the pulse waves. We describe the viscoelasticity by a nonlinear Kelvin–Voigt model in which the coefficients are fitted using experimental time series of pressure and radius measured on a sheep's arterial network. We obtained a good agreement between the results of the nonlinear Kelvin–Voigt model and the experimental measurements. We found that the viscoelastic relaxation time—defined by the ratio between the viscoelastic coefficient and the Young's modulus—is nearly constant throughout the network. Therefore, as it is well known that smaller arteries are stiffer, the viscoelastic coefficient rises when approaching the peripheral sites to compensate the rise of the Young's modulus, resulting in a higher damping effect. We incorporated the fitted viscoelastic coefficients in a nonlinear 1D fluid model to compute the pulse waves in the network. The damping effect of viscoelasticity on the high-frequency waves is clear especially at the peripheral sites.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3