Stall Warning in a Low-Speed Axial Fan by Visualization of Sound Signals

Author:

Sheard Anthony G.1,Corsini Alessandro2,Bianchi Stefano2

Affiliation:

1. Fläkt Woods Limited Axial Way, Colchester CO4 5AR, UK

2. Dipartimento di Meccanica e Aeronautica Sapienza, University of Rome, Via Eudossiana 18, I-00184 Rome, Italy

Abstract

This study describes the development of a novel stall-detection methodology for low-speed axial-flow fans. Because aerodynamic stall is a major potential cause of mechanical failure in axial fans, effective stall-detection techniques have had wide application for many years. However, aerodynamic stall does not always result in mechanical failure. A subsonic fan can sometimes operate at low speeds in an aerodynamically stalled condition without incurring mechanical failure. To differentiate between aerodynamic stall conditions that constitute a mechanical risk and those that do not, the stall-detection methodology in the present study utilizes a symmetrized dot pattern (SDP) technique that is capable of differentiating between stall conditions. This paper describes a stall-detections criterion based on a SDP visual waveform analysis and develops a stall-warning methodology based on that analysis. This study presents an analysis of measured acoustic and structural data across nine aerodynamic operating conditions represented in a 3×3 matrix. The matrix is a combination of (i) three speeds (full-, half-, and quarter-speed) and (ii) three operational states (stable operation, incipient stall, and rotating stall). The matrix of SDPs and structural data are used to differentiate critical stall conditions (those that will lead to mechanical failure of the fan) from noncritical ones (those that will not result in mechanical failure), thus providing a basis for an intelligent stall-warning methodology.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3