Affiliation:
1. Department of Mechanical Engineering, McGill University, Montreal, Quebec, H3A 2K6, Canada
2. Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802
3. Department of Theoretical and Applied Mechanics, Cornell University, Ithaca, NY 14853
Abstract
This paper describes the observed dynamical behavior of a cantilevered pipe conveying fluid, an autonomous nonconservative (circulatory) dynamical system, limit-cycle motions of which, upon loss of stability via a Hopf bifurcation, interact with nonlinear motion-limiting constraints. This system was found to become chaotic at sufficiently high flow rates. Motions of the system, sensed by an optical tracking system, were analyzed by Fast Fourier Transform, autocorrelation, Poincare´ map, and delay embedding techniques, and the fractal dimension of the system, dc, was calculated. Values of dc = 1.03, 1.53, and 3.20 were obtained in the period-1, “fuzzy” period-2 and chaotic regimes of oscillation of the system. Based on these calculations, a four-dimensional analytical model was constructed, which was found to capture the essential dynamical features of observed behavior quite well.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献