Experimental Study on Pressure Losses in Circular Orifices With Inlet Cross Flow

Author:

Feseker Daniel1,Kinell Mats2,Neef Matthias3

Affiliation:

1. Werkzeugbau Siegfried Hofmann GmbH, Lichtenfels 96215, Germany e-mail:

2. Siemens Industrial Turbomachinery AB, Finspång 612 31, Sweden

3. Faculty of Mechanical and Process Engineering, University of Applied Sciences Düsseldorf, Düsseldorf 40476, Germany

Abstract

The ability to understand and predict the pressure losses of orifices is important in order to improve the air flow within the secondary air system. This experimental study investigates the behavior of the discharge coefficient for circular orifices with inlet cross flow which is a common flow case in gas turbines. Examples of this are at the inlet of a film cooling hole or the feeding of air to a blade through an orifice in a rotor disk. Measurements were conducted for a total number of 38 orifices, covering a wide range of length-to-diameter ratios, including short and long orifices with varying inlet geometries. Up to five different chamfer-to-diameter and radius-to-diameter ratios were tested per orifice length. Furthermore, the static pressure ratio across the orifice was varied between 1.05 and 1.6 for all examined orifices. The results of this comprehensive investigation demonstrate the beneficial influence of rounded inlet geometries and the ability to decrease pressure losses, which is especially true for higher cross flow ratios where the reduction of the pressure loss in comparison to sharp-edged holes can be as high as 54%. With some exceptions, the chamfered orifices show a similar behavior as the rounded ones but with generally lower discharge coefficients. Nevertheless, a chamfered inlet yields lower pressure losses than a sharp-edged inlet. The obtained experimental data were used to develop two correlations for the discharge coefficient as a function of geometrical as well as flow properties.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3