Development and Utilization of Ontologies in Design for Manufacturing

Author:

Chang Xiaomeng1,Rai Rahul2,Terpenny Janis3

Affiliation:

1. Grado Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA 24061

2. Department of Mechanical Engineering, California State University, Fresno, Fresno, CA 93740

3. Department of Mechanical Engineering, and Department of Engineering Education, Virginia Tech, Blacksburg, VA 24061

Abstract

There are many challenges associated with the design and realization of fast changing highly customized products. One promising approach is to implement design for manufacturing (DFM) strategies aimed at reducing production costs without compromising product quality. For manufacturers doing business in a globally distributed market place, effective reuse and sharing of the DFM knowledge in a collaborative environment is essential. In recent years, ontologies are increasingly used for knowledge management in engineering. Here, ontology is defined as a formal specification of domain knowledge that can be used to define a set of data and structure that enables experts to share information in a domain of interest, to aid information reasoning, and to manage and reuse data. The primary goal of this paper is to put forward the process of ontology development and utilization for DFM and to study the most important phases in the process, including: the concept categorization and class hierarchy development, slot categorization and development, identification and realization of relations among slots, and methods to support knowledge capture and reuse. Four cases are presented to illustrate the promising use of a DFM ontology. These cases prove that the DFM ontology and the process of ontology development and utilization for the DFM can facilitate the reuse of existing data, find the inconsistency and errors in data, reduce the work associated with populating the knowledge base of the ontology, and help designers make decisions by considering complex technical and economical criteria.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference43 articles.

1. Decision-Making in Engineering Design

2. Methodology for the Design and Evaluation of Ontologies;Gruninger

3. Designing and Evaluating Generic Ontologies;Gruninger

4. Converting an Informal Ontology Into Ontolingua: Some Experiences;Uschold

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3