Optimizing the Interfacial Thermal Conductance at Gold–Alkane Junctions From “First Principles”

Author:

Zhang Jingjie1,Polanco Carlos A.1,Ghosh Avik W.2

Affiliation:

1. Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22904 e-mail:

2. Department of Electrical and Computer Engineering, Department of Physics University of Virginia, Charlottesville, VA 22904 e-mail:

Abstract

We theoretically explore the influence of end-group chemistry (bond stiffness and mass) on the interfacial thermal conductance at a gold–alkane interface. We accomplish this using the nonequilibrium Green's function (NEGF) coupled with first principle parameters in density functional theory (DFT) within the harmonic approximation. Our results indicate that the interfacial thermal conductance is not a monotonic function of either chemical parameters but instead maximizes at an optimal set of mass and bonding strength. This maximum is a result of the interplay between the overlap in local density of states (LDOS) of the device and that in the contacts, as well as the phonon group velocity. We also demonstrate the intrinsic relationship between the diffusive mismatch model (DMM) and the properties from NEGF, and provide an approach to get DMM from first principles NEGF. By comparing the NEGF-based DMM conductance and range of conductance while altering the mass and bonding strength, we show that DMM provides an upper bound for elastic transport in this dimension-mismatched system. We thus have a prescription to enhance the thermal conductance of systems at low temperatures or at low dimensions where inelastic scattering is considerably suppressed.

Funder

"Division of Chemical, Bioengineering, Environmental, and Transport Systems"

"Division of Electrical, Communications and Cyber Systems"

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3