Energy Transfer From High-to Low-Frequency Modes in a Flexible Structure via Modulation

Author:

Nayfeh S. A.1,Nayfeh A. H.1

Affiliation:

1. Department of Engineering Science and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061

Abstract

An experimental study of the response of axially-symmetric (i.e., circular cross-section) cantilever beams to planar external excitations is presented. Because of the axial symmetry, one-to-one internal resonances occur at each natural frequency. These resonances cause the planar motions to lose stability and nonplanar (whirling) motions are observed. Under certain conditions, periodically-and chaotically-modulated motions may occur. In addition, when the beam is excited near one of its high natural frequencies, large first-mode responses accompanied by slow modulations of the amplitudes and phases of high-frequency modes are observed. This interaction between high-and low-frequency modes may be extremely dangerous because the amplitudes of the responses of the low-frequency modes can be very large compared with those of the directly excited high-frequency modes.

Publisher

ASME International

Subject

General Engineering

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3