In Vivo Calibration of a Femoral Fixation Device Transducer for Measuring Anterior Cruciate Ligament Graft Tension: A Study in an Ovine Model

Author:

Zacharias Isaac1,Howell Stephen M.1,Hull M. L.2,Lawhorn Keith W.3

Affiliation:

1. Department of Mechanical Engineering, University of California, Davis, CA 95616

2. Department of Mechanical Engineering and Biomedical Engineering Program, University of California, Davis, CA 95616

3. Department of Orthopedics, David Grant Medical Center, Travis Air Force Base, CA 90909

Abstract

Toward developing a transducer for measuring in vivo tension in anterior cruciate ligament grafts in humans, the objectives of this study were to determine the following: (1) whether the calibration of a previously reported femoral fixation device transducer (FDT) (Ventura et al., 1998) is affected by the presence of the graft when implanted in the tibial metaphysis of an ovine model, (2) whether the FDT remains calibrated at 4 weeks postoperatively, and (3) whether the biological incorporation of the graft occurs prior to a change in the FDT calibration. The FDT was implanted in the hind limb of five sheep using an extra-articular procedure. Both the proximal common digital extensor tendon (i.e., graft) and a Teflon-coated wire were looped around the FDT inside a tunnel in the tibial metaphysis. The FDT was calibrated on three occasions using the loop of wire: once intraoperatively before graft insertion, once intraoperatively after graft insertion, and once postoperatively after the animals had been sacrificed at 4 weeks. Following sacrifice, the load transmitted to the FDT by the graft was also determined. The FDT exhibited linear calibration intraoperatively both before and after graft insertion with an average error relative to the calibration before insertion of the graft of −4.6 percent of full-scale load (150 N) and this average relative error was not significantly different from zero p=0.183. After 4 weeks of implantation, the average relative percent error was −5.0 percent and was not significantly different from zero p=0.434 indicating that the FDT remained calibrated in the in vivo environment. Because only 15 percent of the graft tension was transmitted to the FDT after 4 weeks, biological incorporation of the graft preceded the loss of calibration. In light of these findings, the FDT offers the capability of measuring the intra-articular ACL graft tension in vivo in animal models and possibly humans before the biological bond develops and also of monitoring the formation and maturation of the biological bond between a graft and bone tunnel.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3