Morphological Analysis of the Right Ventricular Endocardial Wall in Pulmonary Hypertension

Author:

Bordones-Crom Alifer1,Patnaik Sourav S.2,Menon Prahlad G.3,Murali Srinivas4,Finol Ender5

Affiliation:

1. UTSA/UTHSA Joint Graduate Program in Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX 78249

2. Department of Mechanical Engineering, University of Texas at San Antonio, San Antonio, TX 78249; Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080

3. Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260

4. Allegheny Health Network, Allegheny General Hospital, Pittsburgh, PA 15212

5. UTSA/UTHSA Joint Graduate Program in Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX 78249; Department of Mechanical Engineering, University of Texas at San Antonio, San Antonio, TX 78249

Abstract

Abstract Pulmonary hypertension (PH) is a chronic progressive disease diagnosed when the pressure in the main pulmonary artery, assessed by right heart catheterization (RHC), is greater than 25 mmHg. Changes in the pulmonary vasculature due to the high pressure yield an increase in the right ventricle (RV) afterload. This starts a remodeling process during which the ventricle exhibits changes in shape and eventually fails. RV models were obtained from the segmentation of cardiac magnetic resonance images at baseline and 1-year follow-up for a pilot study that involved 12 PH and 7 control subjects. The models were used to create surface meshes of the geometry and to compute the principal, mean, and Gaussian curvatures. Ten global curvature indices were calculated for each of the RV endocardial wall reconstructions at the end-diastolic volume (EDV) and end-systolic volume (ESV) phases of the cardiac cycle. Statistical analysis of the data was performed to discern if there are significant differences in the curvature indices between controls and the PH group, as well as between the baseline and follow-up phases for the PH subjects. Six curvature indices, namely, the Gaussian curvature at ESV, the mean curvature at EDV and ESV, the L2-norm of the mean curvature at ESV, and the L2-norm of the major principal curvature at EDV and ESV, were found to be significantly different between controls and PH subjects (p < 0.05). We infer that these geometry measures could be used as indicators of RV endocardial wall morphology changes. Two global parameters, the Gaussian and mean curvatures at ESV, showed significant changes at the one-year follow-up for the PH subjects (p < 0.05). The aforementioned geometry measures to assess changes in RV shape could be used as part of a noninvasive computational tool to aid clinicians in PH diagnostic and progression assessment, and to evaluate the effectiveness of treatment.

Funder

American Heart Association

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3