High-Fidelity Simulations of a High-Pressure Turbine Vane Subject to Large Disturbances: Effect of Exit Mach Number on Losses

Author:

Zhao Yaomin1,Sandberg Richard D.1

Affiliation:

1. Department of Mechanical Engineering, University of Melbourne, Melbourne, VIC 3010, Australia

Abstract

Abstract We report on a series of highly resolved large-eddy simulations of the LS89 high-pressure turbine (HPT) vane, varying the exit Mach number between Ma = 0.7 and 1.1. In order to accurately resolve the blade boundary layers and enforce pitchwise periodicity, we for the first time use an overset mesh method, which consists of an O-type grid around the blade overlapping with a background H-type grid. The simulations were conducted either with a synthetic inlet turbulence condition or including upstream bars. A quantitative comparison shows that the computationally more efficient synthetic method is able to reproduce the turbulence characteristics of the upstream bars. We further perform a detailed analysis of the flow fields, showing that the varying exit Mach number significantly changes the turbine efficiency by affecting the suction-side transition, blade boundary layer profiles, and wake mixing. In particular, the Ma = 1.1 case includes a strong shock that interacts with the trailing edge, causing an increased complexity of the flow field. We use our recently developed entropy loss analysis (Zhao and Sandberg, 2019, “Using a New Entropy Loss Analysis to Assess the Accuracy of RANS Predictions of an HPT Vane,” ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition, Paper No. GT2019-90126) to decompose the overall loss into different source terms and identify the regions that dominate the loss generation. Comparing the different Ma cases, we conclude that the main mechanism for the extra loss generation in the Ma = 1.1 case is the shock-related strong pressure gradient interacting with the turbulent boundary layer and the wake, resulting in significant turbulence production and extensive viscous dissipation.

Funder

Office of Science

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3