Uncertainty Evaluation on Multi-Hole Aerodynamic Pressure Probes

Author:

Notaristefano Andrea1,Gaetani Paolo1,Dossena Vincenzo1,Fusetti Alberto1

Affiliation:

1. Laboratory of Fluid Machines (LFM), Dipartimento di Energia, Politecnico di Milano, Via Lambruschini 4, Milano 20156, Italy

Abstract

Abstract In the frame of a continuous improvement of the performance and accuracy in the experimental testing of turbomachines, the uncertainty analysis on measurements instrumentation and techniques is of paramount importance. For this reason, since the beginning of the experimental activities at the Laboratory of Fluid Machines (LFM) located at Politecnico di Milano (Italy), this issue has been addressed and different methodologies have been applied. This paper proposes a comparison of the results collected applying two methods for the measurement uncertainty quantification to two different aerodynamic pressure probes: sensor calibration, aerodynamic calibration and probe application are considered. The first uncertainty evaluation method is the so-called “uncertainty propagation” method (UPM); the second is based on the “Monte Carlo” method (MCM). Two miniaturized pressure probes have been selected for this investigation: a pneumatic five-hole probe and a spherical fast-response aerodynamic pressure probe (sFRAPP), the latter applied as a virtual four-hole probe. Since the sFRAPP is equipped with two miniaturized pressure transducers installed inside the probe head, a specific calibration procedure and a dedicated uncertainty analysis are required.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3