Challenging Paradigms by Optimizing Combustible Dust Separator

Author:

Strasser Wayne1,Strasser Alex2

Affiliation:

1. Fellow ASME Eastman Chemical Company, Kingsport, TN 37660 e-mail:

2. Mem. ASME Oak Ridge National Lab, Oak Ridge, TN 37830 e-mail:

Abstract

A computational study was carried out to investigate the effects of internal geometry changes on the likelihood of solids buildup within, and the efficiency of, an industrial dust collector. Combustible solids held up in the unit pose a safety risk. The dust collector serves multiple functions, so the design requires a delicate balance. Particles should be separated from the incoming mixture and collected in the bottom of the unit. This particulate material should freely flow into a high-speed ejector (Mach 0.4) underneath. Gas must also flow freely to the top outlet, but sufficient gas must flow down to the ejector so that its motive gas augments the transport of particles back to the reactor (recirculation). Computational design evaluations included: (1) rod spacing, (2) ledge removal, and (3) rod cover plates. Testing on particle size distribution and density was carried out in-house to provide inputs to the computational fluid dynamics (CFD) model. Rod spacing reduction had a mixed effect on flow distribution. Plates were found to induce a negative effect on recirculation and a mixed effect on combustible solids accumulation. Removal of the ledge, however, offered slightly more recirculation along with completely alleviating stagnant solids accumulation. It is shown that, without consideration of detailed fluid physics, general separator design principals might be misguiding.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3