Development of Damage-Tolerant and Fracture-Resistant Materials by Utilizing the Material Inhomogeneity Effect

Author:

Kolednik O.1,Kasberger R.1,Sistaninia M.12,Predan J.3,Kegl M.3

Affiliation:

1. Erich Schmid Institute of Materials Science, Austrian Academy of Sciences, Jahnstrasse 12, A-8700 Leoben, Austria

2. Materials Center Leoben Forschung GmbH, Roseggerstrasse 12, A-8700 Leoben, Austria

3. Faculty of Mechanical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia

Abstract

Abstract The improvement of fracture strength by insertion of thin, soft interlayers is a strategy observed in biological materials such as deep-see sponges. The basic mechanism is a reduction of the crack driving force due to the spatial variation of yield strength and/or Young's modulus. The application of this “material inhomogeneity effect” is demonstrated in this paper. The effectiveness of various interlayer configurations is investigated by numerical simulations under application of the configurational force concept. Laminated composites, made of high-strength tool steels as matrix materials and low-strength deep-drawing steel as interlayer material, were manufactured by hot press bonding. The number of interlayers and the interlayer thickness were varied. Fracture mechanics experiments show crack arrest in the first interlayer and significant improvements in fracture toughness, even without the occurrence of other toughening mechanisms, such as interface delamination. The application of the material inhomogeneity effect for different types of matrix materials is discussed.

Funder

Austrian Research Funding Association

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference75 articles.

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3