Heat Transfer Enhancement by Flow Destabilization in Electronic Chip Configurations

Author:

Amon C. H.1

Affiliation:

1. Carnegie Mellon University, Department of Mechanical Engineering, Pittsburgh, PA 15213

Abstract

Numerical simulations of the flow pattern and forced convective heat transfer in geometries such as those encountered in cooling systems for electronic devices are presented. For Reynolds numbers above the critical one, Rc, these flows exhibit a traveling wave structure with laminar self-sustained oscillations at the least stable Tollmien-Schlichting mode frequency. Supercritical oscillatory flow induces large-scale convective patterns which lead to significant mixing and correspondingly heat transfer augmentation. Three techniques of heat transfer enhancement by flow destabilization are compared on an equal pumping basis: active flow modulation, passive flow modulation and supercritical flow destabilization. It is found that the best enhancement system regarding minimum power dissipation corresponds to passive flow modulation in the range of low Nusselt numbers. However, supercritical flow destabilization becomes competitive as the requirement for a higher Nusselt number begins to dominate the design choices.

Publisher

ASME International

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3