Numerical Analysis for the Assessment of Factors Influencing the Breakdown of Swirl Flow in a Cylinder Driven by a Rotating End Wall

Author:

Sreejith M.1,Lal S. Anil2,Pai Abhijith S.2

Affiliation:

1. Department of Mechanical Engineering, College of Engineering Trivandrum, APJ Abdul Kalam Technological University, Kerala 695016, India

2. Center for Fluid Dynamics, Department of Mechanical Engineering, College of Engineering Trivandrum, Kerala 695016, India

Abstract

Abstract Finite element solution for the classical problem of swirl flow in a cylinder with a rotating lid has been used to study the characteristic features of the stream-tube and identify the factors contributing to axial vortex breakdown. An increase of rotational Reynolds number has been found to result in (i) a decrease of total flow rate; (ii) an increase of flow rate through the boundary layer over the stationary walls; (iii) an increase of the throat area of the stream-tube, with the upstream axial vortex flow in some cases having a deficit in momentum flux needed to overcome the pressure and viscous forces; and (iv) an increase of distance for the axial flow to sustain deceleration in the diverging passage. Based on the analysis, it is hypothesized that “flow with particles in axial vortex motion having a deficit of momentum flux for axial flow when subjecting to a fluctuating radial force undergoes axial vortex breakdown.” This explanation has been able to justify the disappearance of vortex breakdown at larger Re of laminar regime and the absence of vortex breakdown in small aspect ratio cylinders. We report novel results pertaining to total flow rate and its distribution within the vessel. The momentum flux of axial vortex, a main determinant of bubble breakdown, is found to be governed by the total flow rate, distribution of flow through the boundary layers, and the Reynolds number. The proposed hypothesis has been verified by analyzing two cases, one involving a passive and the other involving an active mechanism for regulating the axial momentum.

Publisher

ASME International

Subject

Mechanical Engineering

Reference31 articles.

1. On Stationary and Travelling Vortex Breakdowns;J. Fluid Mech.,1971

2. Effect of Vortex Breakdown on Mass Transfer in a Cell Culture Bioreactor;Mod. Phys. Lett. B,2005

3. Vortex Breakdown: A Review;Prog. Energy Combust. Sci.,2001

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3