Effect of State-of-Stress and Yield Criterion on the Bauschinger Effect

Author:

Rolfe S. T.1,Haak R. P.1,Gross J. H.1

Affiliation:

1. United States Steel Corporation, Applied Research Laboratory, Monroeville, Pa.

Abstract

During fabrication, the cold forming of structural components may reduce the yield strength of a component if it is loaded in a direction opposite to that of the cold forming. This reduction in yield strength, referred to as the Bauschinger effect, is influenced by the state-of-stress under which the cold forming is performed, by the criterion used to determine the yield strength, and by the use of post-forming stress relief. To establish the importance and magnitude of these effects, specimens from 2 1/2-in-thick plates of HY-80 steel, cold-formed by plane strain bending, were tested along with specimens that were cold-formed by plane-stress axial straining. For material tested in a direction opposite to that of cold forming, the Bauschinger effect was observed both in tension and compression, whereas for material tested at 90 deg to the direction of cold forming in plane strain, both the tensile and compressive yield strengths increased and no Bauschinger effect was observed. Because of the difference in restraint, the Bauschinger effect was greater for plane-stress axial deformation than for plane-strain bending deformation. The Bauschinger effect was greater when the yield strength was determined at small offsets and was essentially eliminated at an offset greater than 0.5 percent. In addition, the Bauschinger effect was greatest for small amounts of cold deformation and was progressively decreased by strain hardening at large amounts of cold deformation. The reduction in secant modulus and in yield strength (Bauschinger effect) in cold-formed material was essentially eliminated by stress-relief treatment at 1025 deg. F. The results indicate the importance of knowing the cold-forming state-of-stress, the criterion used in determining yield strength, and the effects of stress relief when assessing the effects of cold deformation on mechanical properties.

Publisher

ASME International

Subject

General Medicine

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3