Radiation Loading of a Cylindrical Source in a Fluid-Filled Cylindrical Cavity Embedded Within a Fluid-Saturated Poroelastic Medium

Author:

Hasheminejad S. M.,Hosseini H.1

Affiliation:

1. Department of Mechanical Engineering, Iran University of Science and Technology, Narmak, Tehran 16844, Iran

Abstract

Radiation loading on a vibrating structure is best described through its radiation impedance. In the present work the modal acoustic radiation impedance load on an infinitely long cylindrical source harmonically excited in circumferentially periodic (axially independent) spatial pattern, while positioned concentrically within a fluid cylinder, which is embedded in a fluid-saturated unbounded elastic porous medium, is computed. This configuration, which is a realistic idealization of an acoustic logging tool suspended in a fluid-filled borehole within a permeable surrounding formation (White, J. E., 1983, Underground Sound Application of Seismic Waves, Elsevier, Amsterdam, Fig. 5.29, p. 183), is of practical importance with a multitude of possible applications in seismo-acoustics and noise control engineering. The formulation utilizes the Biot phenomenological model to represent the behavior of the sound in the porous, fluid-saturated, macroscopically homogeneous and isotropic surrounding medium. Employing the appropriate wave-harmonic field expansions and the pertinent boundary conditions for the given boundary configuration, a closed-form solution in the form of an infinite series is developed and the resistive and reactive components of modal radiation impedances are determined. A numerical example for a cylindrical surface excited in vibrational modes of various order, immersed in a water-filled cavity which is embedded within a water-saturated Ridgefield sandstone environment, is presented and several limiting cases are examined. Effects of porosity, frame stiffness, source size, and the interface permeability condition on the impedance values are presented and discussed.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3