An Integrated System for the Aerodynamic Design of Compression Systems—Part I: Development

Author:

Ghisu Tiziano1,Parks Geoffrey T.1,Jarrett Jerome P.1,Clarkson P. John1

Affiliation:

1. Engineering Design Centre, Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, Cambridgeshire CB2 1PZ, UK

Abstract

The design of gas turbine engines is a complex problem. This complexity has led to the adoption of a modular design approach, in which a conceptual design phase fixes the values for some global parameters and dimensions in order to facilitate the subdivision of the overall task into a number of simpler subproblems. This approach, while making a complex problem more tractable, necessarily has to rely on designer experience and simple evaluations to specify these process-intrinsic constraints at a point in the design process where very little knowledge about the final design exists. Later phases of the design process, using higher-fidelity tools but acting on a limited region of the design space, can only refine an already established design. While substantial improvements in performance have been possible with the current approach, further gains are becoming increasingly hard to achieve. A gas turbine is a complex multidisciplinary system: a more integrated design approach can facilitate a better exploitation of the trade-offs between different modules and disciplines, postponing the setting of these critical interface parameters (such as flow areas, radii, etc.) to a point where more information exists, reducing their impact on the final design. In the resulting large, possibly multimodal, highly constrained design space, and with a large number of objectives to be considered simultaneously, finding an optimal solution by simple trial-and-error can prove extremely difficult. A more intelligent search approach, in which a numerical optimizer takes the place of the human designer in seeking optimal designs, can enable the design space to be explored significantly more effectively, while also yielding a substantial reduction in development times thanks to the automation of the design process. This paper describes the development of a system for the integrated design and optimization of gas turbine engines, linking a metaheuristic optimizer to a geometry modeler and to evaluation tools with different levels of fidelity. In recognition of the substantial increase in design space size required by the integrated approach, an improved parameterization based on the concept of principal components’ analysis was implemented, allowing a rotation of the design space along its most significant directions and a reduction in its dimensionality, proving essential for a faster and more effective exploration of the design space.

Publisher

ASME International

Subject

Mechanical Engineering

Reference41 articles.

1. Giles, M. B. , 1998, “Some Thoughts on Exploiting CFD for Turbomachinery Design,” University of Oxford Technical Report.

2. The Technical and Economic Relevance of Understanding Blade Row Interaction Effects in Turbomachinery;Wisler

3. Progress in Aeroengine Technology (1939-2003);Ballal;J. Aircr.

4. Propulsion and Power for 21st Century Aviation;Sehra;Prog. Aerosp. Sci.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3