Stabilization Device for a Rigid Disc Excited by Friction

Author:

Miyasato Hugo Heidy1,Segala Simionatto Vinícius Gabriel2,Dias Milton1

Affiliation:

1. Department of Integrated Systems School of Mechanical Engineering, University of Campinas–UNICAMP, Rua Mendeleiev, 200, 13083-860 Campinas, SP, Brazil

2. Department of Integrated Systems School of Mechanical Engineering, University of Campinas–UNICAMP, Rua Mendeleiev 200, 13083-860 Campinas, SP, Brazil

Abstract

Abstract Models for rotating rigid discs excited by contact elements have been developed for the study of break noise and vibration. More recently, models for clutch squeal/eek noise have been developed as well. Such phenomenological representations, even though simple, are of great help for designers given that many physical features can be included, such as the circulatory and gyroscopic effects. Instability or self-excited vibrations are represented by wobbling motions. In this study, a device is included as a disc connected to the primary system by a set of spring and damping elements. A complex coordinate notation was helpful to make a concise physical description of the in-phase and out-of-phase wobbling motions between the bodies. If its properties are properly adjusted, all modes interact (indicating veering or crossings between the eigenvalue loci), and the system is stabilized.

Publisher

ASME International

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3