Damage Localization in Composite Structures Using Nonlinear Vibration Response Properties

Author:

Underwood Sara S.1,Meyer Janette J.2,Adams Douglas E.3

Affiliation:

1. Purdue Center for Systems Integrity, Purdue University, 1500 Kepner Drive, Lafayette, IN 47905 e-mail:

2. Laboratory for Systems Integrity and Reliability, Vanderbilt University, 2301 Vanderbilt Place, Nashville, TN 37235 e-mail:

3. Laboratory for Systems Integrity and Reliability, Vanderbilt University, 2301 Vanderbilt Place, Nashville, TN 37235

Abstract

Subsurface damage in composite materials is difficult to detect using visual techniques, and other current inspection methods lack the ability to perform quick, wide-area inspections without the need for reference signatures or baseline measurements. This paper presents a method for detecting and locating subsurface damage in composite materials without historical reference measurements by considering the nonlinear behavior of the material in the vicinity of damage. Nonlinear behavior is identified by comparing frequency response functions measured at different input amplitudes. It will be shown that the nonlinear behavior of the material is most evident in the areas nearest to the damage. The proposed inspection method is demonstrated both analytically and experimentally. First, a finite element model of a sandwich beam is developed using Bernoulli–Euler beam elements to represent each layer of the beam and springs to represent the interface between the layers. A bilinear stiffness nonlinearity is simulated to represent disbond damage between the top and core layers of the beam. The simulated disbond damage is localized by identifying degrees of freedom which indicate significant nonlinear response through a comparison of frequency response functions measured at various input amplitudes. Next, the method is demonstrated experimentally by identifying disbond damage in a fiberglass sandwich panel. A three-dimensional scanning laser vibrometer is used to measure the forced frequency response of the panel in its damaged state as it is excited at two or more amplitudes of excitation by a piezoelectric actuator. Comparisons of the frequency response functions measured at different input amplitudes show that the subsurface damage introduces nonlinear behavior which resembles a bilinear stiffness nonlinearity, and the differences in the frequency response functions are largest in the vicinity of the damage location. In addition, it was found that improved localization of the damage is achieved by investigating the response at higher frequencies. This work has application as a nondestructive method for detecting and locating subsurface damage in composite materials and, by using a laser vibrometer for noncontact measurement, allows for quick, wide-area inspection of composite materials without the need for reference signatures or baseline measurements.

Publisher

ASME International

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3