Boundary for Complete Set of Attractors for Forced–Damped Essentially Nonlinear Systems

Author:

Grinberg Itay1,Gendelman Oleg V.2

Affiliation:

1. Faculty of Mechanical Engineering, Technion—Israel Institute of Technology, Haifa 32000, Israel e-mails: ;

2. Faculty of Mechanical Engineering, Technion—Israel Institute of Technology, Haifa 32000, Israel e-mail:

Abstract

Forced–damped essentially nonlinear oscillators can have a multitude of dynamic attractors. Generically, no analytic procedure is available to reveal all such attractors. For many practical and engineering applications, however, it might be not necessary to know all the attractors in detail. Knowledge of the zone in the state space (or the space of initial conditions), in which all the attractors are situated might be sufficient. We demonstrate that this goal can be achieved by relatively simple means—even for systems with multiple and unknown attractors. More specifically, this paper suggests an analytic procedure to determine the zone in the space of initial conditions, which contains all attractors of the essentially nonlinear forced–damped system for a given set of parameters. The suggested procedure is an extension of well-known Lyapunov functions approach; here we use it for analysis of stability of nonautonomous systems with external forcing. Consequently, instead of the complete state space of the problem, we consider a space of initial conditions and define a bounded trapping region in this space, so that for every initial condition outside this region, the dynamic flow will eventually enter it and will never leave it. This approach is used to find a special closed curve on the plane of initial conditions for a forced–damped strongly nonlinear oscillator with single-degree-of-freedom (single-DOF). Solving the equations of motion is not required. The approach is illustrated by the important benchmark example of x2n potential, including the celebrated Ueda oscillator for n = 2. Another example is the well-known model of forced–damped oscillator with double-well potential. We also demonstrate that the boundary curve, obtained by analytic tools, can be efficiently “tightened” numerically, yielding even stricter estimation for the zone of the existing attractors.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference28 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3