Experimental and Numerical Study of Heat Transfer in a Gas Turbine Combustor Liner

Author:

Bailey J. C.1,Intile J.2,Fric T. F.2,Tolpadi A. K.3,Nirmalan N. V.1,Bunker R. S.1

Affiliation:

1. GE Corporate Research and Development, Niskayuna, NY 12309

2. GE Power Systems, Greenville, SC 29602

3. GE Power Systems, Schenectady, NY 12345

Abstract

Experiments and numerical simulations were conducted to understand the heat transfer characteristics of a stationary gas turbine combustor liner cooled by impingement jets and cross flow between the liner and sleeve. Heat transfer was also aided by trip-strip turbulators on the outside of the liner and in the flowsleeve downstream of the jets. The study was aimed at enhancing heat transfer and prolonging the life of the combustor liner components. The combustor liner and flow sleeve were simulated using a flat-plate rig. The geometry has been scaled from actual combustion geometry except for the curvature. The jet Reynolds number and the mass-velocity ratios between the jet and cross flow in the rig were matched with the corresponding combustor conditions. A steady-state liquid crystal technique was used to measure spatially resolved heat transfer coefficients for the geometric and flow conditions mentioned above. The heat transfer was measured both in the impingement region as well as over the turbulators. A numerical model of the combustor test rig was created that included the impingement holes and the turbulators. Using CFD, the flow distribution within the flow sleeve and the heat transfer coefficients on the liner were both predicted. Calculations were made by varying the turbulence models, numerical schemes, and the geometrical mesh. The results obtained were compared to the experimental data and recommendations have been made with regard to the best modeling approach for such liner-flow sleeve configurations.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3