Hybrid Modeling of Position-Dependent Dynamics of Thin-Walled Parts Using Shell Elements for Milling Simulation

Author:

Karimi Behnam1,Altintas Yusuf1

Affiliation:

1. Manufacturing Automation Laboratory; Department of Mechanical Engineering, The University of British Columbia, Vancouver BC V6 T 1Z4, Canada

Abstract

Abstract This article presents a hybrid model to update the position-dependent structural dynamic parameters of thin-walled workpieces as the metal is removed during machining. The initial workpiece is modeled by shell elements, and its full stiffness and mass matrices are used to solve the eigenvalues and mode shapes to predict the frequency response function (FRF) at a fixed location. The model is calibrated using the experimentally measured FRF, which reduces the errors contributed by the uncertainties in the material properties and damping values. The optimized finite element (FE) model is then perturbed at discrete cutting locations to obtain the updated natural frequencies and mode shapes of the part without solving the computationally prohibitive eigenvalue problem. The accuracy of the model is further improved by using either full FE solutions or experimental measurements of FRFs at a few intermediate steps which reduce the accumulated perturbation errors along the tool path. The proposed method is verified in five-axis milling of a thin-walled twisted fan blade. It is shown that using shell elements reduces the computation effort by ∼20 times compared to the conventional three-dimensional (3D) cube elements. The experimental calibration of the numerical model at a few discrete locations reduces the prediction error of natural frequencies by about 50%.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3