Some Advanced Air-Bearing Design Issues for Proximity Recording

Author:

Bogy David B.1,Lu Sha1,O’Hara Matthew A.1,Zhang Shuyu1

Affiliation:

1. Computer Mechanics Laboratory, Department of Mechanical Engineering, University of California, Berkeley, CA 94720

Abstract

In magnetic hard disk drives the minimum spacing between the air-bearing slider and disk has been reduced to under 50 nm, and some drives now employ so-called proximity sliders that are designed to operate at some level of interference between the slider and the peak asperities on the disk. This ultra-low flying condition brings into play some new interface phenomena and accentuates some of the well known ones as well. In this paper, we consider some air-bearing design issues related to proximity recording. First, we examine the effects of shear flow in the bearing, which is usually neglected, and we show that for high-pitch proximity slider designs the effect is not negligible. Next, we note that such low spacing also tends to accelerate particle accumulation at the trailing edges of the slider. In an effort to address this problem, a model is developed for calculating forces on particles in the air bearing. Including this in the CML air bearing design code we show that designs can be created that eject most of the particles from the sides rather than trapping them at the trailing edge. Finally, we investigate the performance of proximity sliders with regard to their sensitivity to altitude changes. We include altitude sensitivity as an objective in the design optimization scheme and demonstrate that it can yield air-bearing design with performance much less sensitive to changes in altitude.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3