Affiliation:
1. Delft University of Technology, Department of Electrical Engineering, Laboratory of Electromagnetic Research, P.O. Box 5031, 2600 GA Delft, The Netherlands
Abstract
A rigorous theory of the diffraction of time-harmonic elastic waves by a cylindrical, stress-free crack embedded in an elastic medium is presented. The incident wave is taken to be either a P-wave or an SV-wave. The resulting boundary-layer problem for the unknown jump in the particle displacement across the crack is solved by employing an integral-equation approach. The jump is expanded in a complete sequence of Chebyshev polynomials, and, writing the Green’s function as a Fourier integral, a system of algebraic equations is obtained. Numerical results are presented in the form of dynamic stress intensity factors, scattering cross sections, and normalized power-scattering characteristics. Some of them deviate from earlier published results.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献