Solutions for Transient Heat Conduction With Solid Body Motion and Convective Boundary Conditions

Author:

McMasters Robert L.1,Beck James V.2

Affiliation:

1. Department of Mechanical Engineering, Virginia Military Institute, Lexington, VA 24450

2. Department of Mechanical Engineering, Michigan State University, East Lansing, MI 48824

Abstract

The analytical solution for the problem of transient thermal conduction with solid body movement is developed for a parallelepiped with convective boundary conditions. An effective transformation scheme is used to eliminate the flow terms. The solution uses Green’s functions containing convolution-type integrals, which involve integration over a dummy time, referred to as “cotime.” Two types of Green’s functions are used: one for short cotimes comes from the Laplace transform and the other for long cotimes from the method of separation of variables. A primary advantage of this method is that it incorporates internal verification of the numerical results by varying the partition time between the short and long components. In some cases, the long-time solution requires a zeroth term in the summation, which does not occur when solid body motion is not present. The existence of this zeroth term depends on the magnitude of the heat transfer coefficient associated with the convective boundary condition. An example is given for a two-dimensional case involving both prescribed temperature and convective boundary conditions. Comprehensive tables are also provided for the nine possible combinations of boundary conditions in each dimension.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference16 articles.

1. Exact Solution for Nonlinear Thermal Diffusion and Its Use for Verification;McMasters;J. Thermophys. Heat Transfer

2. Oberkampf, W. L., Sindir, M. N., and Conlisk, A. T., 1998 “Guide for the Verification and Validation in Computational Fluid Dynamics Simulation,” Paper No. AIAA-G-077-1998.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Solving two-dimensional Cartesian unsteady heat conduction problems for small values of the time;International Journal of Thermal Sciences;2012-10

2. Literature Survey of Numerical Heat Transfer (2000–2009): Part II;Numerical Heat Transfer, Part A: Applications;2011-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3