Affiliation:
1. School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China e-mail:
Abstract
For solar plants, waste-energy recovery, and turbogenerators, there is a considerable amount of waste energy due to low mass flow rate. Owing to the high specific power output and large pressure ratios across the turbine, a supersonic industrial steam turbine (IST) is able to utilize the waste energy associated with low mass flow rate. Supersonic IST has fewer stages than conventional turbines and a compact and modular design, thus avoiding the excessive size and manufacturing cost of conventional IST. Given their flexible operation and ability to function with loads in the range of 50–120% of the design load, supersonic IST offers significant advantages compared to conventional IST. The strong shock-wave loss caused by supersonic flows can be reduced by decreasing the shock intensity and reducing its influence; consequently, a supersonic IST can reach higher efficiency levels. Considering the demonstrated utility of bowed blades in conventional IST, this paper presents a study of the use of bowed blades in a supersonic IST. For this purpose, first, the shock-wave structure in the supersonic flow field was analyzed and compared with experimental results. Then, four different bowed blades were designed and compared with a straight blade to study the influence of bowed blades on the shock-wave structure and wetness. The results indicate that S-shaped bowing can improve the efficiency of supersonic turbines, and the energy-loss coefficient of the stators can be decreased by 2.4% or more under various operating conditions.
Subject
Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. The compound bowing design in a highly loaded linear cascade with large turning angle;Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering;2020-06-01