Computation of Midsurface by Feature-Based Simplification–Abstraction–Decomposition

Author:

Kulkarni Yogesh H.1,Sahasrabudhe Anil1,Kale Mukund2

Affiliation:

1. Department of Mechanical Engineering, College of Engineering Pune, Pune 411005, Maharashtra, India e-mail:

2. Siemens PLM, Pune 411057, Maharashtra, India e-mail:

Abstract

Computer-aided design (CAD) models of thin-walled solids such as sheet metal or plastic parts are often reduced dimensionally to their corresponding midsurfaces for quicker and fairly accurate results of computer-aided engineering (CAE) analysis. Computation of the midsurface is still a time-consuming and mostly, a manual task due to lack of robust and automated techniques. Most of the existing techniques work on the final shape (typically in the form of boundary representation, B-rep). Complex B-reps make it hard to detect subshapes for which the midsurface patches are computed and joined, forcing usage of hard-coded heuristic rules, developed on a case-by-case basis. Midsurface failures manifest in the form of gaps, overlaps, nonmimicking input model, etc., which can take hours or even days to correct. The research presented here proposes to address these problems by leveraging feature-information available in the modern CAD models, and by effectively using techniques like simplification, abstraction, and decomposition. In the proposed approach, first, the irrelevant features are identified and removed from the input FbCAD model to compute its simplified gross shape. Remaining features then undergo abstraction to transform into their corresponding generic Loft-equivalents, each having a profile and a guide curve. The model is then decomposed into cellular bodies and a graph is populated, with cellular bodies at the nodes and fully overlapping-surface-interfaces at the edges. The nodes are classified into midsurface-patch generating nodes (called “solid cells” or sCells) and interaction-resolving nodes (“interface cells” or iCells). In a sCell, a midsurface patch is generated either by offset or by sweeping the midcurve of the owner-Loft-feature's profile along with its guide curve. Midsurface patches are then connected in the iCells in a generic manner, thus resulting in a well-connected midsurface with minimum failures. Output midsurface is then validated topologically for correctness. At the end of this paper, real-life parts are used to demonstrate the efficacy of the proposed approach.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications,Software

Reference33 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sustained CAD/CAE Application Integration: Supporting Simplified Models;Journal of Computing and Information Science in Engineering;2020-07-23

2. An analysis-oriented parameter extraction method for features on freeform surface;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2019-07-12

3. User-assisted integrated method for controlling level of detail of large-scale B-rep assembly models;International Journal of Computer Integrated Manufacturing;2018-03-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3