The Shear-Thinning Elastohydrodynamic Film Thickness of a Two-Component Mixture

Author:

Liu Yuchuan1,Wang Q. Jane1,Krupka Ivan2,Hartl Martin2,Bair Scott3

Affiliation:

1. Center for Surface Engineering and Tribology, Northwestern University, 2145 Sheridan Road, B224, Evanston, IL 60208

2. Institute of Machine and Industrial Design, Faculty of Mechanical Engineering, Brno University of Technology, 61669 Brno, Czech Republic

3. Center for High-Pressure Rheology, George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0405

Abstract

Lubricant base oils are often blends of different molecular weight cuts to arrive at a specified ambient pressure viscosity and, to improve the temperature-viscosity behavior or to simply increase the viscosity, viscosity-modifying polymer additives are often added to the base oil. This paper investigates the effect of mixture rheology on elastohydrodynamic lubrication (EHL) film thickness using EHL contact measurements and a full numerical analysis for three synthetic lubricants including two single-component lubricants PAO650 and PAO100 and a mixture of these. The pressure and shear dependences of the viscosity of these lubricants were measured with high-pressure viscometers; viscosities were not adjusted to fit experiment. The point contact film thicknesses for these lubricants in pure rolling were measured using a thin-film colorimetric interferometry apparatus. Numerical simulations based on the measured rheology show very good agreement with the measurements of film thickness while the Newtonian prediction is up to twice the measurement. These results validate the use of realistic shear-thinning and pressure-viscosity models, which originate from viscosity measurements. It is conceivable that simulation may provide a means to “engineer” lubricants with the optimum balance of film thickness and friction through intelligent mixing of components.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3