Statistical Classification of Spectral Data for Laser Weld Quality Monitoring

Author:

Ali Afsar1,Farson Dave2

Affiliation:

1. Mechanical Engineering and Engineering Mechanics, University of Michigan, Ann Arbor, MI 48109

2. Welding Engineering, The Ohio State University, Columbus, OH 43210

Abstract

Signals from several sensors were employed for real-time laser weld quality monitoring. Sheet-metal butt-joint laser welds of three quality classes (full penetration, partial penetration, gapped) were produced in experimental trials. Optical, air-born acoustic and plasma charge signals acquired during welding were subsequently Fourier-transformed and the spectra were analyzed individually to determine relationships to laser weld quality. The frequency bands most highly correlated to weld quality were identified by stepwise linear discriminant analysis (LDA) of the spectra. Testing of the quality discriminators formulated by LDA of the spectral data showed that the acoustic signal was most reliably correlated with weld quality. Fusing the data from all three sensors prior to LDA analysis produced a discriminator that had about the same reliability as one based on acoustic data alone.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3