Improving the Resilience of Energy Flow Exchanges in Eco-Industrial Parks: Optimization Under Uncertainty

Author:

Afshari Hamid1,Farel Romain2,Peng Qingjin1

Affiliation:

1. Mem. ASME Department of Mechanical Engineering, University of Manitoba, EITC, 75A Chancellors Circle, Winnipeg, MB R3T 5V6, Canada e-mail:

2. PS2E Research and Education Institute, Les Loges-en-Josas 78354, France e-mail:

Abstract

Eco-Industrial parks (EIPs) and industrial symbioses (IS) provide cost-effective and environmental friendly solutions for industries. They bring benefits from industrial plants to industrial parks and neighborhood areas. The exchange of materials, water, and energy is the goal of IS to reduce wastes, by-products, and energy consumption among a cluster of industries. However, although the IS design looks for the best set of flow exchanges among industries at a network level, the lack of access to accurate data challenges the optimal design of a new EIP. IS solutions face uncertainties. Considering the huge cost and long establishment time of IS, the existing studies cannot provide a robust model to investigate effects of uncertainty on the optimal symbioses design. This paper introduces a framework to investigate uncertainties in the EIP design. A multi-objective model is proposed to decide the optimal network of symbiotic exchanges among firms. The model minimizes the costs of multiple product exchanges and environmental impacts of flow exchanges. Moreover, this paper integrates the analysis of uncertainties effects on synergies into the modeling process. The presented models are depicted through optimizing energy synergies of an industrial zone in France. The efficiency of single and multiple objective models is analyzed for the effects of the identified uncertainties. In addition, the presented deterministic and robust models are compared to investigate how the uncertainties affect the performance and configuration of an optimal network. It is believed that the models could improve an EIP's resilience under uncertainties.

Publisher

ASME International

Subject

Mechanical Engineering,Safety Research,Safety, Risk, Reliability and Quality

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3