Modeling of Advanced Combat Helmet Under Ballistic Impact

Author:

Li Y. Q.1,Li X. G.23,Gao X.-L.4

Affiliation:

1. Department of Mechanical Engineering, Southern Methodist University, P. O. Box 750337, Dallas, TX 75275-0337

2. Department of Mechanical Engineering, Southern Methodist University, P. O. Box 750337, Dallas, TX 75275-0337;

3. Division of Neuronic Engineering, School of Technology and Health, Royal Institute of Technology (KTH), Huddinge 141 52, Sweden

4. Fellow ASME Department of Mechanical Engineering, Southern Methodist University, P. O. Box 750337, Dallas, TX 75275-0337 e-mail:

Abstract

The use of combat helmets has greatly reduced penetrating injuries and saved lives of many soldiers. However, behind helmet blunt trauma (BHBT) has emerged as a serious injury type experienced by soldiers in battlefields. BHBT results from nonpenetrating ballistic impacts and is often associated with helmet back face deformation (BFD). In the current study, a finite element-based computational model is developed for simulating the ballistic performance of the Advanced Combat Helmet (ACH), which is validated against the experimental data obtained at the Army Research Laboratory. Both the maximum value and time history of the BFD are considered, unlike existing studies focusing on the maximum BFD only. The simulation results show that the maximum BFD, the time history of the BFD, and the shape and size of the effective area of the helmet shell agree fairly well with the experimental findings. In addition, it is found that ballistic impacts on the helmet at different locations and in different directions result in different BFD values. The largest BFD value is obtained for a frontal impact, which is followed by that for a crown impact and then by that for a lateral impact. Also, the BFD value is seen to decrease as the oblique impact angle decreases. Furthermore, helmets of four different sizes—extra large, large, medium, and small—are simulated and compared. It is shown that at the same bullet impact velocity the small-size helmet has the largest BFD, which is followed by the medium-size helmet, then by the large-size helmet, and finally by the extra large-size helmet. Moreover, ballistic impact simulations are performed for an ACH placed on a ballistic dummy head form embedded with clay as specified in the current ACH testing standard by using the validated helmet model. It is observed that the BFD values as recorded by the clay in the head form are in good agreement with the experimental data.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference55 articles.

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3