Affiliation:
1. Robotics Laboratory, Department of Computer Science, Stanford University, CA 94305
Abstract
Often, the dynamic behavior of multi-degree-of-freedom mechanical systems such as robots and manipulators is studied by computer simulation of their dynamic equations. An important step in the simulation is the inversion of a matrix, often known as the inertia matrix of the system. In the configurations, where the inertia matrix is singular, the simulation is prone to large numerical errors. Commonly, it is believed that this inertia matrix is always positive definite (or, nonsingular) no matter what geometric and inertial attributes are assigned to the links. In this paper, we show that the inertia matrix of a multi-degree-of-freedom mechanical system modeled with point masses can be singular at special configurations of the links. We present a way to systematically enumerate some of these configurations where the inertia matrix for planar series-chain manipulators built with revolute and prismatic joints are singular.
Subject
Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献