Effects of Grooving in a Hydrostatic Circular Step Thrust Bearing With Porous Facing

Author:

Mahbubur Razzaque M.1,Zakir Hossain M.23

Affiliation:

1. Professor Department of Mechanical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh e-mail:

2. Assistant Professor Department of Mechanical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh;

3. Complex Flow Systems Laboratory, Department of Mechanical and Materials Engineering, University of Western Ontario, London, ON N6A 3K7, Canada e-mail:

Abstract

Effects of grooving in a porous faced hydrostatic circular step thrust bearing are investigated using a mathematical model based on the narrow groove theory (NGT). It is shown that enhancement of load capacity by grooving the step is possible at moderate level of permeability of the porous facing. Load capacity drops sharply with the increase of porous facing thickness. However, this drop in load capacity occurs mostly within a small thickness of the porous facing. Considering the coupled effects of permeability and inertia, it is recommended that the dimensionless step location should be 0.5–0.8 and the dimensionless step height should be less than five to take advantage of grooving. The groove geometric parameters such as groove inclination angle, fraction of grooved area and groove depth corresponding to the maximum load capacity are found to be the same for both with and without porous facing. However, with porous facing, the sensitivity of the load capacity on the groove parameters reduces. At high level of permeability, the effects of grooves may become insignificant because of high seepage flow through the porous facing.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3