Molecular Tagging Velocimetry and Its Application to In-Cylinder Flow Measurements

Author:

Vedula Ravi1,Mittal Mayank1,Schock Harold J.2

Affiliation:

1. e-mail:

2. e-mail:  Department of Mechanical Engineering, Michigan State University, East Lansing, MI 48824

Abstract

This review article provides an overview of the experimental studies of in-cylinder flows using various flow measurement techniques with a focus on molecular tagging velocimetry. It is necessary to understand the evolution of large-scale and small-scale turbulence as prepared during the intake stroke with a cycle resolved quantitative description. Due to the difficulty in obtaining these descriptions, either by modeling or experimentally, they are often characterized with somewhat ambiguous notions of bulk swirl and tumble measurement methods. During the intake stroke, in-cylinder flows are formed in such a manner as to provide advantageous spatial and temporal behavior for mixture formation later during the compression stroke. Understanding the details of how these flows influence fuel-air mixing, the initiation of ignition, combustion, and subsequent flame propagation processes is the primary motivation for the development of the methods described in this paper. The authors provide an introduction to fundamental flow motion inside the engine cylinder and measurement techniques, e.g., hot-wire anemometry, laser Doppler anemometry, and particle image velocimetry. Furthermore, molecular tagging velocimetry is discussed in detail in terms of (i) different mechanisms, (ii) procedure and data reduction methods to obtain the desired flow properties such as velocity, vorticity, and turbulent intensities, and (iii) applications to flow studies in internal combustion engines. Finally, the significance of experimental investigations of in-cylinder flows is discussed along with possible future applications.

Publisher

ASME International

Subject

Mechanical Engineering

Reference82 articles.

1. Fluid Motion Within the Cylinder of Internal Combustion Engines—The 1986 Freeman Scholar Lecture;ASME J. Fluids Eng.,1987

2. A Study of Air Flow in an Engine Cylinder,1938

3. Comparison Between In-Cylinder PIV Measurements, CFD Simulations and Steady-Flow Impulse Torque Swirl Meter Measurements,2003

4. Air Swirl in a Road-Vehicle Diesel Engine;Proc. Inst. Mech. Eng.,1962

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3