A Risk-Informed Methodology for ASME Section XI, Appendix G

Author:

Gamble Ronald1,Server William2,Bishop Bruce3,Palm Nathan3,Heinecke Carol3

Affiliation:

1. Sartrex Corporation, Rockville, MD 20852

2. ATI Consulting, Black Mountain, NC 28711

3. Westinghouse Electric Company, Cranberry Township, PA 16066

Abstract

The American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code [1], Section XI, Appendix G provides a deterministic procedure for defining Service Level A and B pressure–temperature limits for ferritic components in the reactor coolant pressure boundary. An alternative risk-informed methodology has been developed for ASME Section XI, Appendix G. This alternative methodology provides easy to use procedures to define risk-informed pressure–temperature limits for Service Level A and B events, including leak testing and reactor start-up and shut-down. Risk-informed pressure–temperature limits provide more operational flexibility, particularly for reactor pressure vessels with relatively high irradiation levels and radiation sensitive materials. This work evaluated selected plants spanning the population of pressurized water reactors (PWRs) and boiling water reactors (BWRs). The evaluation included determining appropriate material properties, reviewing operating history and system operational constraints, and performing probabilistic fracture mechanics (PFM) analyses. The analysis results were used to define risk-informed pressure–temperature relationships that comply with safety goals defined by the United States (U.S.) Nuclear Regulatory Commission (NRC). This alternative methodology will provide greater operational flexibility, especially for Service Level A and B events that may adversely affect efficient and safe plant operation, such as low-temperature-over-pressurization for PWRs and system leak testing for BWRs. Overall, application of this methodology can result in increased plant efficiency and increased plant and personnel safety.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Reference14 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3