Static Friction in a Robot Joint—Modeling and Identification of Load and Temperature Effects

Author:

Bittencourt André Carvalho,Gunnarsson Svante1

Affiliation:

1. Division of Automatic Control,Department of Electrical Engineering, Linköping University, Linköping, Sweden, SE 581-83

Abstract

Friction is the result of complex interactions between contacting surfaces in down to a nanoscale perspective. Depending on the application, the different models available are more or less suitable. Static friction models are typically considered to be dependent only on relative speed of interacting surfaces. However, it is known that friction can be affected by other factors than speed. In this paper, the typical friction phenomena and models used in robotics are reviewed. It is shown how such models can be represented as a sum of functions of relevant states which are linear and nonlinear in the parameters, and how the identification method described in Ref. [1] can be used to identify them when all states are measured. The discussion follows with a detailed experimental study of friction in a robot joint under changes of joint angle, load torque, and temperature. Justified by their significance, load torque and temperature are included in an extended static friction model. The proposed model is validated in a wide operating range, considerably improving the prediction performance compared to a standard model.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3