Advanced Thermal Storage Fluids for Solar Parabolic Trough Systems

Author:

Moens Luc1,Blake Daniel M.1,Rudnicki Daniel L.1,Hale Mary Jane1

Affiliation:

1. National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80401

Abstract

It has been established that the development of a storage option and increasing the operating temperature for parabolic trough electric systems can significantly reduce the levelized electricity cost compared to the current state of the art. Both improvements require a new heat transfer fluid that must have a very low vapor pressure at the hot operating temperature and combined with a high thermal stability, higher than 450°C. Further, the piping layout of trough plants dictates that the fluid not be allowed to freeze, which dictates the use of extensive insulation and heat tracing unless the fluid has a freezing point near 0°C. At present, it seems likely that this “ideal” fluid will have to be found among organic rather than inorganic salts. We are, therefore, investigating the chemical and thermal properties of “room temperature ionic liquids” that hold much promise as a new class of heat transfer or storage fluids.

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Cited by 97 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3