A Novel Single-Passage Transonic Wind Tunnel for Turbine-Vane Film Cooling

Author:

Qenawy Mohamed1,Yuan Lin1,Liu Yingzheng1,Peng Di1,Wen Xin1,Zhou Wenwu1

Affiliation:

1. Key Lab of Education Ministry for Power Machinery and Engineering, Gas Turbine Research Institute, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China

Abstract

Abstract Wind-tunnel testing of turbines cascade is an important technique for quantifying the realistic conditions of turbine-vane film cooling. However, the complex and expensive facilities needed for the multipassage design of such wind tunnels have prompted the introduction of the single-passage design strategy. In this contribution, detailed procedures for building a novel single-passage transonic wind-tunnel using additive manufacturing are presented. In addition, the detailed flow structure caused by the passage was investigated. The proposed design was evaluated step-by-step using an integrated model that successively comprised two-dimensional (2D) periodic passage simulation, 2D single-passage simulation, three-dimensional (3D) single-passage simulation, construction, and testing. The proposed design was found to achieve flow periodicity at transonic flow conditions with relatively low-flow consumption. The results were validated by comparison to the available literature data. In addition, an endwall-cooling configuration was successfully deployed using fast-response pressure-sensitive paint (fast-PSP). This study, combined with the help of commercial software and 3D printing, shed light upon strategies for time- and cost-reduction in linear cascade design, which could benefit the turbomachinery community.

Funder

National Natural Science Foundation of China

Shanghai Sailing Program

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3