A Model for Abrasive-Waterjet (AWJ) Machining

Author:

Hashish Mohamed1

Affiliation:

1. Flow Research, Inc., Kent, Wash. 98032

Abstract

Ultrahigh-pressure abrasive-waterjets (AWJs) are being developed as net shape and near-net-shape machining tools for hard-to-machine materials. These tools offer significant advantages over existing techniques, including technical, economical, environmental, and safety concerns. Predicting the cutting results, however, is a difficult task and a major effort in this development process. This paper presents a model for predicting the depth of cut of abrasive-waterjets in different metals. This new model is based on an improved model of erosion by solid particle impact, which is also presented. The erosion model accounts for the physical and geometrical characteristics of the eroding particle and results in a velocity exponent of 2.5, which is in agreement with erosion data in the literature. The erosion model is used with a kinematic jet-solid penetration model to yield expressions for depths of cut according to different modes of erosion along the cutting kerf. This kinematic model was developed previously through visualization of the cutting process. The depth of cut consists of two parts: one due to a cutting wear mode at shallow angles of impact, and the other due to a deformation wear mode at large angles of impact. The predictions of the AWJ cutting model are checked against a large database of cutting results for a wide range of parameters and metal types. Materials are characterized by two properties: the dynamic flow stress, and the threshold particle velocity. The dynamic flow stress used in the erosion model was found to correlate with a typical modulus of elasticity for metals. The threshold particle velocity was determined by best fitting the model to the experimental results. Model predictions agree well with experimental results, with correlation coefficients of over 0.9 for many of the metals considered in this study.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 178 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3