Affiliation:
1. Flow Research, Inc., Kent, Wash. 98032
Abstract
Ultrahigh-pressure abrasive-waterjets (AWJs) are being developed as net shape and near-net-shape machining tools for hard-to-machine materials. These tools offer significant advantages over existing techniques, including technical, economical, environmental, and safety concerns. Predicting the cutting results, however, is a difficult task and a major effort in this development process. This paper presents a model for predicting the depth of cut of abrasive-waterjets in different metals. This new model is based on an improved model of erosion by solid particle impact, which is also presented. The erosion model accounts for the physical and geometrical characteristics of the eroding particle and results in a velocity exponent of 2.5, which is in agreement with erosion data in the literature. The erosion model is used with a kinematic jet-solid penetration model to yield expressions for depths of cut according to different modes of erosion along the cutting kerf. This kinematic model was developed previously through visualization of the cutting process. The depth of cut consists of two parts: one due to a cutting wear mode at shallow angles of impact, and the other due to a deformation wear mode at large angles of impact. The predictions of the AWJ cutting model are checked against a large database of cutting results for a wide range of parameters and metal types. Materials are characterized by two properties: the dynamic flow stress, and the threshold particle velocity. The dynamic flow stress used in the erosion model was found to correlate with a typical modulus of elasticity for metals. The threshold particle velocity was determined by best fitting the model to the experimental results. Model predictions agree well with experimental results, with correlation coefficients of over 0.9 for many of the metals considered in this study.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
178 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献