Design and Performance Analysis of a Solar-Coal-Fired Complementary Power System Based on the S-CO2 Brayton Cycle

Author:

Zhou Yunlong1,Bao Jiaxin1,Yang Mei1

Affiliation:

1. School of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, China

Abstract

Abstract To make solar energy conversion more effective and enable effective complementary utilization of multiple energy sources, two types of solar-coal-fired complementary power (SCCP) systems, which use the supercritical CO2 Brayton cycle, are investigated and their layouts are improved. In addition, a thermodynamic performance analysis is carried out. The results show that, as the amount of work done by the solar energy module increases, the coal saving rate increases linearly and proportionally in both SCCP systems. Also, the supplementary electric power generated by the solar field increases. The two improved layouts increase the net efficiency of the SCCP systems significantly (SCCP1: from 43.60% to 47.65%, SCCP2: from 43.60% to 47.67%). More specifically, the net efficiency of the improved layout for SCCP2 increases faster than that for SCCP1 (with its improved layout), when the second split ratio (SR2) exceeds 0.031. When the net efficiency remains unchanged, the SR2 for SCCP2 improved layout has a wide range. Furthermore, both the operation performance and operating mode conversion of the basic system are studied for varying sunlight conditions. The simulation results are consistent with the expectations, which underlines the development potential of the system to a certain extent.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference40 articles.

1. Decision Tree-Based Modeling of CO2 Equilibrium Absorption in Different Aqueous Solutions of Absorbents;Yarveicy;Environ. Prog. Sustain. Energy,2019

2. Performance Evaluation of the Machine Learning Approaches in Modeling of CO2 Equilibrium Absorption in Piperazine Aqueous Solution;Yarveicy;J. Mol. Liq.,2018

3. Situation and Prospect of Energy Consumption for China’s Thermal Power Generation;Yang;Proc. CSEE,2013

4. Thermodynamic Analysis of Supercritical Carbon Dioxide Brayton Cycle Power System;Feng;Energy Conserv.,2019

5. Review of the Coal-Fired, Over-Supercritical and Ultra-Supercritical Steam Power Plants;Tumanovskii;Therm. Eng.,2017

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3